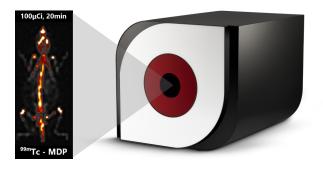

• BIOEMTECH


eye-series: your eyes to in-vivo imaging

The only coincidence PET imaging system in the market! (Planar PET)

Y

The only scintigraphic imaging system in the market! (Planar SPECT)

Specifications

β-eye

γ-eye

Useful Field of View (UFOV)	48mm x 98mm	
Maximum Sensitivity	14kcps/MBq	56cps/MBq
Spatial Resolution	1.5mm @40mm	1.7mm @0mm,
Energy resolution	19% @511keV	19% @140keV
Detector	4 x PSPMTs	2 x PSPMTs
Scintillator	Pixelated BGO	Pixelated CsI(Na)
Dimensions	40cm(L) x 35cm(W) x 30cm(H)	
Weight	30 kg	25 kg

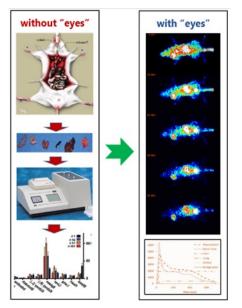
Software

Fully comprehensive, user-friendly software:

- Database archive
- Real-time imaging
- Post-processing analysis
- Reporting tool

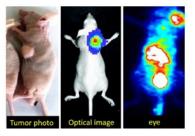
Packaging

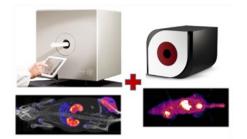
The system is delivered in a case including:


- Laptop with preinstalled software
- Mouse beds and connection cables
- Calibration and quality control phantoms
- Portable as standard luggage

• BIOEMTECH

30 things you didn't know you could do with the eyes


If you work with ex vivo biodistributions, using the eyes you can:


- 1. Obtain full dataset non-invasively, for each animal
- 2. Minimize the number of required animals per study
- 3. Significantly improve statistics and accuracy
- 4. Reduce cost and time for testing candidate products
- 5. Evaluate small variations in synthesis in vivo
- 6. Test different injection routes easily and fast
- 7. Study the effect of anesthesia protocols in a few animals
- 8. Assess animal preparation conditions non-invasively
- 9. Test and optimize different injected concentrations
- 10. Identify bad injections or unexpected behavior
- 11. Obtain a quality assurance tool for planning biodistributions
- 12. Comply with bio-ethical standards and the 3Rs Principle

If you work in tumor research planar with optical imaging, using the eyes can:

- 13. Provide images of high resolution with no penetration depth
- 14. Offer quantitative data for subcutaneous tumors
- 15. Allow pharmacokinetic analysis in major organs
- 16. Allow direct translation for follow up research on larger animals
- 17. Offer a much lower cost compared to optical imaging

If you work with multimodal systems, the eyes enable you to fully exploit them:

- 18. Have a screening tool for daily use in your lab
- 19. Optimize protocol parameters before 3D imaging
- 20. Define the optimal time points for 3D imaging
- 21. Select the best animal for 3D imaging
- 22. Avoid imaging animals with bad biodistribution
- 23. Check successful injection before 3D scan
- 24. Save resources when "buying" imaging time

And what surprisingly most tomographic systems do not offer, but the eyes do:

- 25. Continuous whole body mouse images, right from the first second post injection
- 26. Acquire short frames, down to 10sec for fast dynamic studies
- 27. Ability to image low activities, even below 10uCi
- 28. Image first blood pass by injecting the mouse on the camera
- 29. Provide animal anesthesia, with all cables inside the system
- 30. Possibility to image many organs ex vivo, as an alternative to biodistribution