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Back in the days



Prognosis of a heart attack

Cardiovascular diseases the leading cause of death

Fatality rates from heart attacks were extremely high. 

In 1980s, when a heart attack patient is admitted (University of California, San 
Diego Medical Center), they would measure 19 variables within 24 hours:

Blood pressure, age, and 17 clinical variables known to be highly informative of 
the patient's condition.

Additionally, temperature, humidity, upper atmospheric conditions, levels of 
airborne pollutants, and other meteorological variables.

But they were not being used in clinical practices. How to improve the prognosis?



CART™
Breiman, Friedman, Olshen, Stone developed Classification and Regression Trees (CART).

Select a clinical variable, and split (e.g., binary).
No stopping rule, repeat until no more split is possible.
Minimizing a cost function, a greedy algorithm. 

Decision trees allowed clinicians to trust the model and apply even without a computer.

Nowadays, more than 90% survival.

Krzywinski and Altman (2017) Breiman et al  (1984) 



What is interpretability?

“We define interpretable machine learning as the extraction of relevant 
knowledge from a machine-learning model concerning relationships either 
contained in data or learned by the model.” – Murdoch et al. (2019)

“Interpretability is the degree to which a human can understand the cause of a 
decision” – Miller (2017)

“The higher the interpretability of a machine learning model, the easier it is for 
someone to comprehend why certain decisions or predictions have been 
made.” – Molnar (2022)



Why it’s so difficult to define interpretability

What is an explanation?

Or a sufficient explanation?

What is understandable to humans?

What if an explanation is understandable to a doctor but not a patient? 

How simple should an interpretable model be?

Is a simple model always more interpretable? 

How do we compare explanations?

→ No definition and no quantification



Interpretation in a larger context 
Model-based interpretability

Requires modification of existing models
Potentially lower performances
Direct understanding 
Simpler models/systems

Post-hoc interpretability
No modification of a model
No change in performance
Potentially ambiguous interpretation

Murdoch et al. (2019)



Trade-off

Predictive accuracy: the performance of the trained ML model

Descriptive accuracy: the accuracy of the post-hoc interpretability

The full model (e.g., coefficients and weights)
Approximation 
The top predictors
Examples/prototypes
Linear local approximation
Model compression D
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Two approaches to interpretability

Interpretability DL can feel enigmatic and ambitious. Where do we start? 

Model-centric: explain how the model works in a “simplified” manner while 
being faithful to the model 

Human-centric: explain the model works in a “understandable” manner to 
humans

→ In the best case scenario, both would converge to the same solution



Models

Statistical and machine learning algorithms (including neural networks): 

Y = f(X)
In a linear model:

Y = BX + E

In a generalized linear model (e.g., logistic regression),

g(Y) = BX + E



Machine Learning and Interpretability

Increasing data!

Increasing parameter space
e.g., more genes and pixels

Fuller understanding &
Less interpretable

More complex models, non-linearity
e.g., GAM, DNN

Better performance & 
Less interpretable

Lin and Alessio 2009Pennisi 2008

Altman & Krzywinski (2018)



Machine Learning and Interpretability

Simpler models/algorithms
Easier to interpret

More complex models/algorithms
Harder to interpret

Linear Model
Kernel Methods

Generalized Linear Models Generalized Additive Models

Decision trees Rules-based

Bagging, Boosting, Ensemble Models

Perceptron  Sparse DL Convolutional NN



Machine Learning Models

Statistical and machine learning algorithms (including neural networks): 

Y = f(X) 
A linear regression:

y = b0+b1x1 + … + bnxn + e 
y ~ outcomes, disease progression, cancer status, etc

x ~ genes, clinical variables, pixels, features, etc 

b ~ coefficients to be estimated



Machine Learning Models

Statistical and machine learning algorithms (including neural networks): 

Y = f(X) 
A linear regression:

y1 = b1,0+b1,1x1,1 + … + b1,nx1,n + e1

…

ym = bm,0+bm,1xm,1 + … + bm,nxm,n + em



Neural Networks
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Large data means noisy data

Y = BX + E

Based on observed X and Y, B must be estimated. 

In many systems, many variables are expected not to contribute to the 
outcome.
e.g., background pixels in CT/PET images unimportant for tumor/survival/prognosis
e.g., most of genes not related to clinical phenotypes in a genome-wide association study

When data are collected from real world, all of estimated coefficients 
will be likely non-zero.



Lasso adds a L1 penalty to the least squares:

Regularization and shrinkage

Ridge (L2 penalty)

Elastic Net (combining L1 & L2 penalties)

B = {B1, …, Bp}; t controls the regularization



Lasso example: prostate cancer (Stamey et al. 1989)

Men who were about to receive radical prostatectomy

Levels of prostate-specific antigen and clinical variables:
age, cancer vol, , prostate weight, benign prostatic hyperplasia amount, etc

Tibshirani (1996)

Fit a linear model,
with a lasso penalty

Shrinkage effect (t) was 
selected by cross validation

Three clinical variables are 
selected 



Lasso example: bootstrapping 

Standard error estimated by bootstrap resampling of residuals

Fit the least squares fit with a fixed lasso penalty from CV

Tibshirani (1996)



Shrinkage & variable selection

A large number of predictors → variable/feature selection.

Nowadays, a typical clinical studies would collect > hundreds of variables.

How to intelligently regularize is one of the central goals.

In the feature space of DNN:
Srivastava et al. 2014 Dropout: A Simple Way to Prevent Neural Networks from Overfitting
Lemhadri et al 2021 A neural network with feature sparsity 

Interpretability methods for neural networks also implicitly or explicitly:
Ross et al. 2017 The Neural LASSO: Local Linear Sparsity for Interpretable Explanations



LassoNet for sparse features
The skip-layer (residual) connection allows sparsity in features being used in a classifier. Both linear and 
non-linear parts are optimized jointly, e.g., L1 penalty
LassoNet selects the most important features automatically; lead to lower classification errors (sometimes).

Lemhadri et al 2021



Implicit sparsity in saliency maps (gradients)

Adebayo et al 2018

Explanations for the predicted label 



But!

Variable selection must reflect the underlying system

Ideally, sparisty leads to a robust and generalizable model

Quantitative ways (eg, CV) to select shrinkage effects

The trade-off between interpretability and accuracy

Human perception is easily fooled



How do we evaluate?

Adebayo et al 2018



Why seek sparsity? 

More interpretable 

Better visualization

Build testable hypotheses

Computational efficient

Easier to implement in practice 



Why seek sparsity? 

More interpretable 

Better visualization

Build testable hypotheses

Computational efficient

Easier to implement in practice 

Better prediction in high dimensional data → Empirical Bayes



Empirical Bayes & Stein’s Paradox

Stein’s Paradox in Statistics by Efron & Morris (1977)

When multiple variables are estimated simultaneously (in an unbiased and optimal 
manner), there exists more accurate estimators (lower MSE) on average.



Empirical Bayes

In a standard Bayesian, a prior = fixed before data 

In empirical Bayes, a prior distribution is estimated from the data

No need to impose or have a strong prior belief 

Bridging two sides (frequentist vs Bayesian) of statistical traditions

Appropriate for modeling repeated ML applications in the system 



Least squares with a large m

● Estimate each bij independently via minimizing the sum of the squares of 
the residuals

● For each variable i = 1, …, m, the errors are uncorrelated, a mean of zero, 
equal variances (a.k.a. optimal and unbiased)

● However, when we are dealing with a large data -- m variables, measured 
on a set of n observations -- consider a bias variance tradeoff

● Get “better” estimates by reducing variance and increasing bias
● James–Stein estimator → Empirical Bayes estimator



Shrinkage, a toy example

b1 
b2

 b3 
b4
b5 
b6
b7 
b8

0.5 
1.1
 0.1
-2.1
0.2 
-1.2
-0.4
-0.2

Least Squares 
estimation

Mean = -.25
Var = 1.01

0.4 
0.9

 0.05
-1.9
0.1 
-1.1
-0.3
-.15

Shrinking toward 
the mean by 
“some method”

Mean = -.25
Var = 0.77

Y =  BX     +   E



A baseball player’s batting average

In sports analytics, we often want to predict a player’s statistics in the future. 
E.g., a batting average = # of a baseball player's hits divided by # of at-bats.

Given the last year’s data on batting averages, you are tasked with
predicting players’ batting average next year.

Unbiased LM: the individual player’s batting average from the last year as the 
predicted average for the next year.



Distribution of batting averages
Betting Averages of 9,256 baseball players in the US major leagues

Robinson 2015

Is this the best player
In terms of betting average?

Will these players have an 
average of 0.0 again next year?



Improved prediction of batting averages

Beta distribution fit into the data (after some filtering) Empirical Bayes Estimates of batting averages

X∼Beta(α=78,β=22)



Empirical Bayes: moderated t-statistics

Gene expression of zebrafish with a Swirl mutation in BMP2 gene       Smyth (2004)
BMP2 gene that affects the dorsal/ventral body axis
A microarray experiment gave  8448 probes (~ transcripts) 

Goal: identify genes with differential expression in Swirl mutants vs wild-types
We can improve our estimates by borrowing information across all data

t-test for testing whether 
means of two groups are equal
sg = residual sample variance  

Moderated t-test
with reduced sg

The “effective” DOF increases 
as extra information borrowed from 
all data



Swirl gene expression study

Top 10 genes from the Swirl experiment Degree of freedom: dg = 3
Estimated prior DoF d0 = 4.17

Sample variance s2
g= 0.109

Estimated prior variance s2
0 = 0.0509

Instead of unbiased t-statistics, we can 
better identify differentially expressed 
genes by borrowing information 
across all genes.

Smyth (2004)



Concluding remarks

Good performance and understanding are not sufficient for clinical translation

The model and the system guides analytical approaches

Application domains are the most important to consider!

Implicit sparsity-inducing behaviors (in feature space and saliency maps)

Sparse networks, two group models, false discovery rates

Interpretable DL in empirical Bayes frameworks

Cross-disciplinary pollination
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