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1 – Standard Radiomics

● Before, medical images are only complementary information for clinicians

● « Radiomics » calling appeared in 2010

● Extraction of quantitative features from medical imaging data
● Statistical information for modeling in oncology :

• Tumor / organ caracteristics for diagnosis
• Clinical outcome (response to therapy, survival)

● Target → Get all relevant information we can

● 1st Idea → «Handcrafted» features

Lambin, et al. Radiomics: extracting more information from medical images using advanced feature analysis. Eur J Cancer 2012
Gillies, et al. Radiomics: Images Are More than Pictures, They Are Data. Radiology 2016

Data types used in Diagnostic & Prognosis

Definition
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Tumours are heterogeneous entities (genetic, cellular, tissular)
● Hypothesis 1 : information in Images (macro scale) reflect at least some caracteristics in Smaller Scales
● Hypothesis 2 : Images contain more information « than meets the eye »

1 – Standard Radiomics
Definition

Gerlinger, et al. Intratumor heterogeneity and branched evolution revealed by multiregion sequencing. N Engl J Med 2012
Leijenaar. Radiomics: Images are more than meets the eye. Thesis, University of Maastricht
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Tumours are heterogeneous entities (genetic, cellular, tissular)
● Hypothesis 1 : information in Images (macro scale) reflect at least some caracteristics in Smaller Scales
● Hypothesis 2 : Images contain more information « than meets the eye »

CT (top) and PET (bottom)
scans of Tumors

Statistical analysis extract more 
information than visual assessment

Non-imaging representation of Tumors

1 – Standard Radiomics
Definition

Gerlinger, et al. Intratumor heterogeneity and branched evolution revealed by multiregion sequencing. N Engl J Med 2012
Leijenaar. Radiomics: Images are more than meets the eye. Thesis, University of Maastricht

Histology Biomarkers Proteomics Genomics
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 «Handcrafted / engineered» features, i.e., designed by human experts decades ago
 
Most often used :

● Shape descriptors
● Intensity histogram / statistics
● 2nd or higher order textures

Sphericity of the Tumor Histogram analysis Co-occurence entropy

Hatt, et al. Data are also images. J Nucl Med 2019

1 – Standard Radiomics
Definition : Features
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Workflow Process

Study Design 
(application, data…)

?



2 3

10Hatt, et al. Data are also images. J Nucl Med 2019

1 – Standard Radiomics
Workflow Process

Study Design 
(application, data…)

?

Images
Acquisition / Collection



2 3

11Hatt, et al. Data are also images. J Nucl Med 2019

1 – Standard Radiomics
Workflow Process

Study Design 
(application, data…)

?

Images
Acquisition / Collection

Pre-processing
(denoising, registration…)



2 3

12Hatt, et al. Data are also images. J Nucl Med 2019

1 – Standard Radiomics
Workflow Process

Study Design 
(application, data…)

?

Images
Acquisition / Collection

Pre-processing
(denoising, registration…) Object(s) Detection / Segmentation (ex. tumors)



2 3

13Hatt, et al. Data are also images. J Nucl Med 2019

1 – Standard Radiomics
Workflow Process

Study Design 
(application, data…)

?

Images
Acquisition / Collection

Pre-processing
(denoising, registration…) Object(s) Detection / Segmentation (ex. tumors)

Extraction of
Handcrafted features



2 3

14Hatt, et al. Data are also images. J Nucl Med 2019

1 – Standard Radiomics
Workflow Process

Study Design 
(application, data…)

?

Images
Acquisition / Collection

Pre-processing
(denoising, registration…) Object(s) Detection / Segmentation (ex. tumors)

Extraction of
Handcrafted features

Modeling / Prediction
Acquisition / Collection &

Curation of associated data
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15Hatt, et al. Data are also images. J Nucl Med 2019
Papadimitroulas, et al. Artificial intelligence: Deep learning in oncological radiomics and challenges of interpretability and data harmonization. Phys Med. 2021

1 – Standard Radiomics
Limitations & Objectives

1st Reference to Radiomics in 2010, yet no transfer to clinical practice :

● Lack of standards (hardly reproducible)
● No automation of process (cannot inspect large datasets manually)
● Too much heterogeneity of data between centers (no harmonization)
● Complex modeling (many available algorithms, with too much hyper-parameters)
● Trust & acceptance issues (Explainability / Interpretability)

Ideal Radiomics Process :

● Can support medical images from any center (Robust)
● Fully Automatized
● Standardized Radiomics features (Reusable)
● Has a strong Clinical Value (comparison / evaluation)
● Is Interpretable for end-users (clinicians trust)

→ Why not use AI ?
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2 – A.I. in Radiomics
Definition

“… a system’s ability to interpret external data correctly, to learn from such data,
and to use those learnings to achieve specific goals and tasks through flexible adaptation.”

→ Complex / Adaptive / Reasoning → Intelligence

Kaplan & Haenlein. Siri, Siri, in my hand: Who’s the fairest in the land? On the interpretations, illustrations, and implications of artificial intelligence. Bus Horiz. 2019
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Artificial intelligence

Machine learning

Deep
Learning

2 – A.I. in Radiomics
Why A.I. in Radiomics ?

● Use existing (un)labeled data to train/learn a model (all knowledge is memorized)
● Apply the model to new data (inference)
● Relies on advanced analysis & statistical methods

Visvikis, et al. Application of artificial intelligence in nuclear medicine and molecular imaging: a review of current status and future perspectives for clinical translation. 
Eur J Nucl Med Mol Imaging 2022
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Input data

Designed program

Calculator

Numeric results

Handcrafted / engineered features

Input data

Known outputs 
(labels)

Calculator

Trained Program

Features learned from the data

3 – Deep Learning in Radiomics
Advantages / Drawbacks of DL

Papadimitroulas, et al. Artificial intelligence: Deep learning in oncological radiomics and challenges of interpretability and data harmonization. Phys Med. 2021
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Input data

Designed program

Calculator

Numeric results

Handcrafted / engineered features

Input data

Known outputs 
(labels)

Calculator

Trained Program

Features learned from the data

High Human Expertise Moderate

Low Data Amount High

Moderate Interpretability Low

3 – Deep Learning in Radiomics
Advantages / Drawbacks of DL

Papadimitroulas, et al. Artificial intelligence: Deep learning in oncological radiomics and challenges of interpretability and data harmonization. Phys Med. 2021
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Robustness Objective → framework needs to be portable on any data (without reajusting)

Hatt, et al. Data are also images. J Nucl Med 2019

Study Design 
(application, data…)

?

Images
Acquisition / Collection

Pre-processing
(denoising, registration…)

Object(s) Detection / Segmentation (ex. tumors) Extraction of
Handcrafted features

Modeling / PredictionAcquisition / Collection &
Curation of associated 

data

3 – Deep Learning in Radiomics
Data Harmonization
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3 – Deep Learning in Radiomics
Data Harmonization

Many hardware brands & products for medical imaging

Different acquisition parameters for different imaging targets

→ Frameworks cannot adapt directly to this heterogeneity

Hatt, et al. Multicentric radiomics studies: challenges and opportunities. EBioMedicine 2019
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3 – Deep Learning in Radiomics
Data Harmonization

Galavis, et al. Variability of textural features in FDG PET images due to different acquisition modes and reconstruction parameters. Acta Oncol 2010
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3 – Deep Learning in Radiomics
Data Harmonization

Galavis, et al. Variability of textural features in FDG PET images due to different acquisition modes and reconstruction parameters. Acta Oncol 2010

Data (images or features) must be modified before doing multicentric studies
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3 – Deep Learning in Radiomics
Data Harmonization

Upadhaya, et al. Machine Learning with Embedded Radiomics Feature Selection Methods: Study on Prognostication of Glioblastoma Multiforme using Multimodal MRI. 
Submitted 2020

Glioblastoma Multiforme
Prediction of overall survival

1st idea : Selection of robust features

→ Problem of choosing the most robust features (human choice)
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2nd idea : ComBat Harmonization

● Widely used since 2017
● Applied on extracted features for MRI / CT / PET
● Better performances observed for most studies

3 – Deep Learning in Radiomics
Data Harmonization : ComBat

Assumption for ComBat

Johnson, et al. Adjusting batch effects in microarray expression data using empirical Bayes methods. Biostatistics. 2007
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for volume j

Average value of y
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Johnson, et al. Adjusting batch effects in microarray expression data using empirical Bayes methods. Biostatistics. 2007
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● Widely used since 2017
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Feature y measured
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for volume j

Average value of y

Additive effect
of scanner i
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2nd idea : ComBat Harmonization

● Widely used since 2017
● Applied on extracted features for MRI / CT / PET
● Better performances observed for most studies

Feature y measured
in scanner i
for volume j

Average value of y

Additive effect
of scanner i

Error term

Multiplicative effect
of scanner i

3 – Deep Learning in Radiomics
Data Harmonization : ComBat

Assumption for ComBat

Johnson, et al. Adjusting batch effects in microarray expression data using empirical Bayes methods. Biostatistics. 2007

Multiple
Measurements

Correction of External Influence
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Total : 197 patients from 3 centers
119 (Brest, France)
50 (Nantes, France)
28 (McGill, Canada)

FDG PET/CT

CE-MRI ADC map DWI MRI

T2-w MRI

3 – Deep Learning in Radiomics
Data Harmonization : ComBat

Lucia, et al. External validation of a combined PET and MRI radiomics model for prediction of recurrence in cervical cancer patients treated with chemoradiotherapy. 
Eur J Nucl Med Mol Imaging 2019
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• Same PET/CT scanners in Brest and Nantes but different protocols
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Lucia, et al. External validation of a combined PET and MRI radiomics model for prediction of recurrence in cervical cancer patients treated with chemoradiotherapy. 
Eur J Nucl Med Mol Imaging 2019

• Same PET/CT scanners in Brest and Nantes but different protocols
• Different PET/CT scanner and protocol in McGill
• Different MRI scanners and protocols in all 3 centers
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(Top) No Harmonization

(Bottom) With ComBat

3 – Deep Learning in Radiomics
Data Harmonization : ComBat

Ronrick, et al. Performance comparison of modified ComBat for harmonization of radiomic features for multicentric studies. Sci Rep 2020

Cervical Cancer Recurrence Prediction on FDG PET + MRI ADC Radiomics
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(Top) No Harmonization

(Bottom) With ComBat

3 – Deep Learning in Radiomics
Data Harmonization : ComBat

Ronrick, et al. Performance comparison of modified ComBat for harmonization of radiomic features for multicentric studies. Sci Rep 2020

Cervical Cancer Recurrence Prediction on FDG PET + MRI ADC Radiomics
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3 – Deep Learning in Radiomics
Data Harmonization : DL

One issue remains → based on assumptions

→ Data Harmonization

3rd Idea : Deep Learning

● Before processing and data extraction of the images
● Registration of images to a pre-determined type :

○ Reconstruction Kernel
○ Voxel Size
○ Specific Scanner
○ …

→ Example of Conversion of Reconstruction Kernels for CT

Choe, et al. Deep Learning-based Image Conversion of CT Reconstruction Kernels Improves Radiomics Reproducibility for Pulmonary Nodules or Masses. Radiology 2019
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Tumor
Intensity

Texture

Concordance Correlation Coefficient
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○ Specific Scanner
○ …

→ Example of Conversion of Reconstruction Kernels for CT
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Original Images acquired with different reconstruction kernels Harmonization (transfer) from one 
kernel to the other

Choe, et al. Deep Learning-based Image Conversion of CT Reconstruction Kernels Improves Radiomics Reproducibility for Pulmonary Nodules or Masses. Radiology 2019

3 – Deep Learning in Radiomics
Data Harmonization : DL
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Original Images acquired with different reconstruction kernels Harmonization (transfer) from one 
kernel to the other

Choe, et al. Deep Learning-based Image Conversion of CT Reconstruction Kernels Improves Radiomics Reproducibility for Pulmonary Nodules or Masses. Radiology 2019

3 – Deep Learning in Radiomics
Data Harmonization : DL
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Original Images acquired with different reconstruction kernels Harmonization (transfer) from one 
kernel to the other

→ ComBat reduces the impact of external 
parameters on the measurements of 
features

Choe, et al. Deep Learning-based Image Conversion of CT Reconstruction Kernels Improves Radiomics Reproducibility for Pulmonary Nodules or Masses. Radiology 2019

3 – Deep Learning in Radiomics
Data Harmonization : DL
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Original Images acquired with different reconstruction kernels Harmonization (transfer) from one 
kernel to the other

→ ComBat reduces the impact of external 
parameters on the measurements of 
features

→ DL approaches directly convert images 
(registration), then features are measured

Choe, et al. Deep Learning-based Image Conversion of CT Reconstruction Kernels Improves Radiomics Reproducibility for Pulmonary Nodules or Masses. Radiology 2019

3 – Deep Learning in Radiomics
Data Harmonization : DL
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3 – Deep Learning in Radiomics
Data Harmonization : DL

Hognon, Clément, et al. "Standardization of multicentric image datasets with generative adversarial networks." IEEE Nuclear Science Symposium and Medical Imaging 
Conference 2019. 2019.

DL Harmonization (usually) uses GANs

● Generator tries to create convincing images
● Discriminator tries to distinguish real & fake images

Example

● Brain Tumor Image Segmentation (BRATS) benchmark
● MRI images from 19 different centers

New idea : Diffusion Models

GAN functioning illustration
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3 – Deep Learning in Radiomics
Data Harmonization : DL

Hognon, Clément, et al. "Standardization of multicentric image datasets with generative adversarial networks." IEEE Nuclear Science Symposium and Medical Imaging 
Conference 2019. 2019.

DL Harmonization (usually) uses GANs

● Generator tries to create convincing images
● Discriminator tries to distinguish real & fake images

Example

● Brain Tumor Image Segmentation (BRATS) benchmark
● MRI images from 19 different centers

New idea : Diffusion Models

GAN functioning illustration

Harmonized images from 
BRATS dataset

Kernel Density estimations 
before (left) and after (right) 

harmonization
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3 – Deep Learning in Radiomics
Tumor Detection & Segmentation

Automation Objective → framework can work fast on large data quantities

Hatt, et al. Data are also images. J Nucl Med 2019

Study Design 
(application, data…)

?

Images
Acquisition / Collection

Pre-processing
(denoising, registration…)

Object(s) Detection / Segmentation (ex. tumors) Extraction of
Handcrafted features

Modeling / PredictionAcquisition / Collection &
Curation of associated 

data
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V = 36 cm3

S = 0.81

V = 34 cm3

S = 0.66 V = 28 cm3

S = 0.57

Tumor shape features are based on
Manual / Semi-Automatic Segmentation

→ What about inter / intra-study Reproducibility ?
→ How to process large data amount ?

Fully Automatic frameworks based on DL
should give harmonious values across data

3 – Deep Learning in Radiomics
Tumor Detection & Segmentation

Hatt, et al. Tumour functional sphericity from PET images: prognostic value in NSCLC and impact of delineation method. Eur J Nucl Med Mol Imaging 2018

Tumor Volume &
Sphericity Computation
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3 – Deep Learning in Radiomics
Tumor Detection & Segmentation

Iantsen, et al. Convolutional neural networks for PET functional volume fully automatic segmentation: development and validation in a multi-center setting. EJNMMI 2021

Semi-Automatic Tumor Segmentation
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3 – Deep Learning in Radiomics
Tumor Detection & Segmentation

Iantsen, et al. Convolutional neural networks for PET functional volume fully automatic segmentation: development and validation in a multi-center setting. EJNMMI 2021

Bladder

Tumor

Semi-Automatic Tumor Segmentation
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3 – Deep Learning in Radiomics
Tumor Detection & Segmentation

Iantsen, et al. Convolutional neural networks for PET functional volume fully automatic segmentation: development and validation in a multi-center setting. EJNMMI 2021

Bladder

TumorUser box for 
algorithm’s input

Semi-Automatic Tumor Segmentation
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3 – Deep Learning in Radiomics
Tumor Detection & Segmentation

Iantsen, et al. Convolutional neural networks for PET functional volume fully automatic segmentation: development and validation in a multi-center setting. EJNMMI 2021
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TumorUser box for 
algorithm’s input

Semi-Automatic Tumor Segmentation
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3 – Deep Learning in Radiomics
Tumor Detection & Segmentation

Iantsen, et al. Convolutional neural networks for PET functional volume fully automatic segmentation: development and validation in a multi-center setting. EJNMMI 2021

U-NET

Bladder

TumorUser box for 
algorithm’s input

Semi-Automatic Tumor Segmentation
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3 – Deep Learning in Radiomics
Tumor Detection & Segmentation

Iantsen, et al. Convolutional neural networks for PET functional volume fully automatic segmentation: development and validation in a multi-center setting. EJNMMI 2021

U-NET

Bladder

TumorUser box for 
algorithm’s input

Semi-Automatic Tumor Segmentation Deep Learning Automated Tumor Segmentation
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Ground-truth

Output

PET (FDG)

Bladder Tumor

3 – Deep Learning in Radiomics
Tumor Detection & Segmentation

Iantsen, et al. Convolutional neural networks for PET functional volume fully automatic segmentation: development and validation in a multi-center setting. EJNMMI 2021
Iantsen, et al. Fully automated detection and segmentation of hypermetabolic lesions in pretherapeutic [18F]FDG PET / CT images of lymphoma and sarcoidosis patients. 
EANM 2021 annual meeting

Semi-automatic vs Fully automated Bladder Tumor Segmentation
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Ground-truth

Output

PET (FDG)

Bladder Tumor CT

FDG PET

3 – Deep Learning in Radiomics
Tumor Detection & Segmentation

Iantsen, et al. Convolutional neural networks for PET functional volume fully automatic segmentation: development and validation in a multi-center setting. EJNMMI 2021
Iantsen, et al. Fully automated detection and segmentation of hypermetabolic lesions in pretherapeutic [18F]FDG PET / CT images of lymphoma and sarcoidosis patients. 
EANM 2021 annual meeting

Semi-automatic vs Fully automated Bladder Tumor Segmentation

Ground Truth Segmentation
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ReferenceSegmentation

3 – Deep Learning in Radiomics
Tumor Detection & Segmentation

Oreiller, et al. Head and Neck Tumor Segmentation in PET/CT: The HECKTOR Challenge. Medical Image Analysis 2022

Fully automated Throat Tumor Segmentation on TDM (dark) & PET (clear)
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ReferenceSegmentation

Segmentation is now widely experimented → high performances

3 – Deep Learning in Radiomics
Tumor Detection & Segmentation

Oreiller, et al. Head and Neck Tumor Segmentation in PET/CT: The HECKTOR Challenge. Medical Image Analysis 2022

Fully automated Throat Tumor Segmentation on TDM (dark) & PET (clear)
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3 – Deep Learning in Radiomics
Features Standardization

Hatt, et al. Data are also images. J Nucl Med 2019

Study Design 
(application, data…)

?

Images
Acquisition / Collection

Pre-processing
(denoising, registration…)

Object(s) Detection / Segmentation (ex. tumors) Extraction of
Handcrafted features

Modeling / PredictionAcquisition / Collection &
Curation of associated 

data

Standardization Objective → Radiomics features must be common to all processes
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3 – Deep Learning in Radiomics
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Hatt, et al. Data are also images. J Nucl Med 2019

Study Design 
(application, data…)

?

Images
Acquisition / Collection

Pre-processing
(denoising, registration…)

Object(s) Detection / Segmentation (ex. tumors) Extraction of
Handcrafted features

Modeling / PredictionAcquisition / Collection &
Curation of associated 

data

Standardization Objective → Radiomics features must be common to all processes
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21 participants from 8 countries

3 – Deep Learning in Radiomics
Features Standardization

Image Biomarker Standardisation Initiative. Multicentre initiative for standardization of image biomarkers.
Zwanenburg, et al. Standardized image biomarkers for high-throughput extraction of features from images, Radiology 2020

IBSI: Image Biomarker Standardization Initiative

Most important study on Feature Standard

BUT no Deep Learning
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3 – Deep Learning in Radiomics
Modeling & Prediction

Hatt, et al. Data are also images. J Nucl Med 2019

Study Design 
(application, data…)

?

Images
Acquisition / Collection

Pre-processing
(denoising, registration…)

Object(s) Detection / Segmentation (ex. tumors) Extraction of
Handcrafted features

Modeling / PredictionAcquisition / Collection &
Curation of associated 

data

Use external data & Radiomics features for automatic Modeling & Prediction
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3 – Deep Learning in Radiomics
Modeling & Prediction

Hatt, et al. Data are also images. J Nucl Med 2019

Study Design 
(application, data…)

?

Images
Acquisition / Collection

Pre-processing
(denoising, registration…)

Object(s) Detection / Segmentation (ex. tumors) Extraction of
Handcrafted features

Modeling / PredictionAcquisition / Collection &
Curation of associated 

data

Use external data & Radiomics features for automatic Modeling & Prediction
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• v1
• v2
• v3
• v4
• ….

Finding Correlation 
between variables

Example

Non-responsive patients have larger 
tumor volume (v2) than responsive 
patients, and have ganglions (v3)

Machine Learning algorithms are widely used (inputs are standard Radiomics features)

→ Idea of finding relations between features

3 – Deep Learning in Radiomics
Modeling & Prediction

Visvikis, et al. Application of artificial intelligence in nuclear medicine and molecular imaging: a review of current status and future perspectives for clinical translation. 
Eur J Nucl Med Mol Imaging 2022

Training Data  (50%)



21

71

• v1
• v2
• v3
• v4
• ….

Finding Correlation 
between variables

Example

Non-responsive patients have larger 
tumor volume (v2) than responsive 
patients, and have ganglions (v3)

f(v2, v3)
Optimizing 
Model 
Parameters

Max accuracy if Volume > 30 cm³
AND more than 0 ganglions

Machine Learning algorithms are widely used (inputs are standard Radiomics features)

→ Idea of finding relations between features

3 – Deep Learning in Radiomics
Modeling & Prediction

Visvikis, et al. Application of artificial intelligence in nuclear medicine and molecular imaging: a review of current status and future perspectives for clinical translation. 
Eur J Nucl Med Mol Imaging 2022

Training Data  (50%) Validation Data (30%)
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• v1
• v2
• v3
• v4
• ….

Finding Correlation 
between variables

Example

Non-responsive patients have larger 
tumor volume (v2) than responsive 
patients, and have ganglions (v3)

f(v2, v3)
Optimizing 
Model 
Parameters

Max accuracy if Volume > 30 cm³
AND more than 0 ganglions

v2 > 30 cm³ 
AND v3 > 0

Evaluate 
Performances

Accuracy → 74 %

Machine Learning algorithms are widely used (inputs are standard Radiomics features)

→ Idea of finding relations between features

3 – Deep Learning in Radiomics
Modeling & Prediction

Visvikis, et al. Application of artificial intelligence in nuclear medicine and molecular imaging: a review of current status and future perspectives for clinical translation. 
Eur J Nucl Med Mol Imaging 2022

Training Data  (50%) Validation Data (30%) Test Data (20%)
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3 – Deep Learning in Radiomics
Modeling & Prediction

Deist, et al. Machine learning algorithms for outcome prediction in (chemo)radiotherapy: an empirical comparison of classifiers. Med Phys 2018

Example : (chemo)radiotherapy

● 12 datasets (3496 patients total)
● Non-Small-Cell Lung Cancer (NSCLC),

Head & Neck Cancer, Meningioma

Conclusions :

● Random forest best in 6/12 datasets
● Elastic net logistic regression best in 4/12 sets

→ No single best classifier across all datasets AUC for multilpe Machine Learning algorithms, on 12 separate datasets
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3 – Deep Learning in Radiomics
Modeling & Prediction

Sepehri, et al. Comparison and fusion of machine learning algorithms for prospective validation of PET/CT radiomic features prognostic value in stage II-III Non-Small 
Cell Lung Cancer. Diagnostics 2021

How to select a machine learning algorithm?
→ Fusion / Ensemble ?

● Stage II and III NSCLC
● PET + CT Radiomics
● Classification as poor prognosis

Algorithms :

● Random Forest
● Support Vector Machine
● Logistic regression / LASSO

VS
● Fusion by majority voting
● Fusion by average of probas

→ What about a full end-to-end Deep Learning 
process ?

Performance of stage, SUV measurements and volume in testing: 55-61%
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CNN architecture for fusion of

3 adjacent 18F-FDG PET intra slices

into a vector

3 – Deep Learning in Radiomics
Towards a Full DL Process

Ypsilantis, et al. Predicting Response to Neoadjuvant Chemotherapy with PET Imaging Using Convolutional Neural Networks. PLoS One 2015

1st proposed full DL-based (2015)

● Directly from Image to Prediction of non-responders for Chemotherapy
● 96 patients for training, 11 for testing
● 2 Networks tested : Triplets (3S-CNN) or single slice (1S-CNN)
● Data augmentation → 5316 triplets for both responders and non-responders



21

76

→ It is possible to get higher performances
without using standard Radiomics

3 – Deep Learning in Radiomics
Towards a Full DL Process

Ypsilantis, et al. Predicting Response to Neoadjuvant Chemotherapy with PET Imaging Using Convolutional Neural Networks. PLoS One 2015

Proposed DL architectures against various ML processes
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3 – Deep Learning in Radiomics
Towards a Full DL Process

Diamant, et al. Deep learning in head & neck cancer outcome prediction. Sci Rep 2019

Other example

● Head & Neck Cancer treatment outcome prediction
● Public dataset from TCIA
● Based on pre-treatment CT images
● CNN using only one image as input (512x512)

→ Better metrics scores than Vallières et al. Standard 
Radiomics
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3 – Deep Learning in Radiomics
Towards a Full DL Process

Antropova, et al. A deep feature fusion methodology for breast cancer diagnosis demonstrated on three imaging modality datasets. Med Phys 2017

Another Possibility

→ Combine Standard & DL-based Radiomics processes

● Breast Cancer Diagnosis
● Tested on 3 imaging modalities :

○ Dynamic Contrast Enhanced-MRI
○ Full-Field Digital Mammography
○ Ultrasound
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3 – Deep Learning in Radiomics
Towards a Full DL Process

Antropova, et al. A deep feature fusion methodology for breast cancer diagnosis demonstrated on three imaging modality datasets. Med Phys 2017

Another Possibility

→ Combine Standard & DL-based Radiomics processes

● Breast Cancer Diagnosis
● Tested on 3 imaging modalities :

○ Dynamic Contrast Enhanced-MRI
○ Full-Field Digital Mammography
○ Ultrasound
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Standard
 radiomics

3 – Deep Learning in Radiomics
Towards a Full DL Process

Antropova, et al. A deep feature fusion methodology for breast cancer diagnosis demonstrated on three imaging modality datasets. Med Phys 2017

Another Possibility

→ Combine Standard & DL-based Radiomics processes

● Breast Cancer Diagnosis
● Tested on 3 imaging modalities :

○ Dynamic Contrast Enhanced-MRI
○ Full-Field Digital Mammography
○ Ultrasound

DL
processes
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Standard
 radiomics

3 – Deep Learning in Radiomics
Towards a Full DL Process

Antropova, et al. A deep feature fusion methodology for breast cancer diagnosis demonstrated on three imaging modality datasets. Med Phys 2017

Another Possibility

→ Combine Standard & DL-based Radiomics processes

● Breast Cancer Diagnosis
● Tested on 3 imaging modalities :

○ Dynamic Contrast Enhanced-MRI
○ Full-Field Digital Mammography
○ Ultrasound

DL
processes



21

82

3 – Deep Learning in Radiomics
Towards a Full DL Process

Antropova, et al. A deep feature fusion methodology for breast cancer diagnosis demonstrated on three imaging modality datasets. Med Phys 2017

Full field digital mamography (FFDM)

N=245

Ultrasound (US)

N=1125

Dynamic contrast enhanced-MRI (DCE-MRI)

N=690 
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3 – Deep Learning in Radiomics
Towards a Full DL Process

Antropova, et al. A deep feature fusion methodology for breast cancer diagnosis demonstrated on three imaging modality datasets. Med Phys 2017

Plotting CNN output against
Standard Radiomics output

→ Moderate agreement leading to
better performance of fusion

 Diagonal classifier agreement plot

between the CNN-based classifier

and the conventional CADx classifier

for FFDM
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3 – Deep Learning in Radiomics
Clinical Value : Importance of Challenges

Andrearczyk, et al. Overview of the HECKTOR Challenge at MICCAI 2021: Automatic Head and Neck Tumor Segmentation and Outcome Prediction in PET/CT 
Images, arXiv 2201.04138 2022

Challenges allow for fair evaluation

2 tasks :
● Automatic Segmentation of the tumor
● Survival Prediction without recurrence

Available data :
● PET / CT images
● 2021 → 6 centers, 425 patients
● 2022 → 9 centers, 800 patients

Objectively computed performances (no tinkering the results)

Allows for comparison of different processes (standard Radiomics / DL-based)
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Partial Results for Outcome Prediction Methods

3 – Deep Learning in Radiomics
Clinical Value : Importance of Challenges

Andrearczyk, et al. Overview of the HECKTOR Challenge at MICCAI 2021: Automatic Head and Neck Tumor Segmentation and Outcome Prediction in PET/CT 
Images, arXiv 2201.04138 2022

Deep Learning only

Large set of Engineered
Radiomics features + ML

Performances similar (or lower)
to clinical variables-only model

(around 0.64 – 0.65)
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3 – Deep Learning in Radiomics
Clinical Value : Importance of Challenges

Andrearczyk, et al. Overview of the HECKTOR Challenge at MICCAI 2021: Automatic Head and Neck Tumor Segmentation and Outcome Prediction in PET/CT 
Images, arXiv 2201.04138 2022

Brain Tumor Segmentation (BraTS) challenge

Also 2 tasks :
● Brain Tumor Segmentation
● Prediction of the MGMT promoter methylation status

Available data :
● Multi-Parametric MRI images
● 2020 → 660 cases
● 2021 → 2,000 cases



● DL is increasingly used in Radiomics
○ Automation of simple tasks (Detection & Segmentation)
○ Harmonization of images
○ Directly for end-to-end processes
○ Frequently using CNN, but not only (GANs, Diffusion Models, …)

● DL could replace standard Radiomics, but some limitations persist
○ Maturity & Evaluation of results → more time
○ Available Data, needed in large quantities → few-shot learning ?
○ Multi-centers studies are required but not easy to coordinate → better communication

One last limitation to assess → Interpretability / Explainability of Deep Networks in Radiomics → more this afternoon

Conclusions



Thank You for your attention

Questions ?

Remarks ?
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